Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex

乙酰胆碱 α7 烟碱受体和多巴胺 D2 受体靶向啮齿动物前额皮质中的许多相同的突触后树突和星形胶质细胞

阅读:5
作者:Aine M Duffy, Megan L Fitzgerald, June Chan, Danielle C Robinson, Teresa A Milner, Kenneth Mackie, Virginia M Pickel

Abstract

The alpha-7 nicotinic acetylcholine receptor (α7nAChR) and the dopamine D(2) receptor (D(2) R) are both implicated in attentional processes and cognition, mediated in part through the prefrontal cortex (PFC). We examined the dual electron microscopic immunolabeling of α7nAChR and either D(2) R or the vesicular acetylcholine transporter (VAChT) in rodent PFC to assess convergent functional activation sites. Immunoreactivity (ir) for α7nAChR and/or D(2) R was seen in the same as well as separate neuronal and glial profiles. At least half of the dually labeled profiles were somata and dendrites, while most labeled axon terminals expressed only D(2) R-ir. The D(2) R-labeled terminals were without synaptic specializations or formed inhibitory or excitatory-type synapses with somatodendritic profiles, some of which expressed the α7nAChR and/or D(2) R. Astrocytic glial processes comprised the majority of nonsomatodendritic α7nAChR or α7nAChR and D(2) R-labeled profiles. Glial processes containing α7nAChR-ir were frequently located near VAChT-labeled terminals and also showed perisynaptic and perivascular associations. We conclude that in rodent PFC α7nACh and D(2) R activation can dually modulate (1) postsynaptic dendritic responses within the same or separate but synaptically linked neurons in which the D(2) R has the predominately presynaptic distribution, and (2) astrocytic signaling that may be crucial for synaptic transmission and functional hyperemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。