Electrochemical determination of rutin by using NiFe2O4 nanoparticles-loaded reduced graphene oxide

负载 NiFe2O4 纳米粒子的还原氧化石墨烯电化学测定芦丁

阅读:6
作者:Nahid Askari, Navvabeh Salarizadeh, Mohammad Bagher Askari

Abstract

A binary transition metal oxide containing nickel and iron (NiFe2O4) and hybridization of this nanomaterial with reduced graphene oxide (rGO) are synthesized by the hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy confirm the successful synthesis of these materials. Also, scanning electron microscope (SEM) and transmission electron microscope (TEM) images illustrated the particle morphology with the particle size of 20 nm. The synthesized material is then examined as a sensor on the surface of the glassy carbon electrode to detect a very small amount of rutin. Some electrochemical tests such as cyclic voltammetry, differential pulse voltammetry (DPV), and impedance spectroscopy indicate the remarkable accuracy of this sensor and its operation in a relatively wide range of concentrations of rutin (100 nM-100 µM). The accuracy of the proposed electrochemical sensors is approximately 100 nM in 0.1 M PBS, (pH = 3) which is relatively impressive and can be reported. Also, the stability rate after 100 DPV was about 95 %, which is a considerable and relatively excellent value. Considering the very good results, it seems that the NiFe2O4-rGO can be considered as a new proposal in the development of accurate and inexpensive electrochemical sensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。