Th17 activation by dendritic cells stimulated with gamma-irradiated Streptococcus pneumoniae

γ 射线照射的肺炎链球菌刺激树突状细胞激活 Th17

阅读:6
作者:Hyun Young Kim, Sun Kyung Kim, Ho Seong Seo, Soyoung Jeong, Ki Bum Ahn, Cheol-Heui Yun, Seung Hyun Han

Abstract

Dendritic cells (DCs) play an important role in antigen presentation, which is an essential step for the induction of antigen-specific adaptive immunity. Inactivated bacterial whole cell vaccines have been widely used to prevent many bacterial infections because they elicit good immunogenicity due to the presence of various antigens and are relatively inexpensive and easy to manufacture. Recently, gamma-irradiated whole cells of nonencapsulated Streptococcus pneumoniae were developed as a broad-spectrum and serotype-independent multivalent vaccine. In the present study, we generated gamma-irradiated S. pneumoniae (r-SP) and investigated its capacity to stimulate mouse bone marrow-derived DCs (BM-DCs) in comparison with heat-inactivated and formalin-inactivated S. pneumoniae (h-SP and f-SP, respectively). r-SP showed an attenuated binding and internalization level to BM-DCs when compared to h-SP or f-SP. r-SP weakly induced the expression of CD80, CD83, CD86, MHC class I, and PD-L2 compared with h-SP or f-SP. Furthermore, r-SP less potently induced IL-6, TNF-α, and IL-23 expression than h-SP or f-SP but more potently induced IL-1β expression than h-SP or f-SP in BM-DCs. Since Th17-mediated immune responses are known to be important for the protection against pneumococcal infections, r-SP-primed DCs were co-cultured with splenocytes or splenic CD4+ T cells. Interestingly, r-SP-sensitized BM-DCs markedly induced IL-17A+ CD4+ T cells whereas h-SP- or f-SP-sensitized BM-DCs weakly induced them. Collectively, these results suggest that r-SP could be an effective pneumococcal vaccine candidate eliciting Th17-mediated immune responses by stimulation of DCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。