Photo-Cross-Linking of IKs Demonstrates State-Dependent Interactions between KCNE1 and KCNQ1

IK 的光交联证实了 KCNE1 和 KCNQ1 之间的状态依赖性相互作用

阅读:6
作者:Maartje Westhoff, Christopher I Murray, Jodene Eldstrom, David Fedida

Abstract

The slow delayed rectifier potassium current (IKs) is a key repolarizing current during the cardiac action potential. It consists of four KCNQ1 α-subunits and up to four KCNE1 β-subunits, which are thought to reside within external clefts of the channel. The interaction of KCNE1 with KCNQ1 dramatically delays opening of the channel but the mechanisms by which this occur are not yet fully understood. Here, we have used unnatural amino acid photo-cross-linking to investigate the dynamic interactions that occur between KCNQ1 and KCNE1 during activation gating. The unnatural amino acid p-Benzoylphenylalanine was successfully incorporated into two residues within the transmembrane domain of KCNE1: F56 and F57. UV-induced cross-linking suggested that F56Bpa interacts with KCNQ1 in the open state, whereas F57Bpa interacts predominantly in resting channel conformations. When UV was applied at progressively more depolarized preopen holding potentials, cross-linking of F57Bpa with KCNQ1 was slowed, which indicates that KCNE1 is displaced within the channel's cleft early during activation, or that conformational changes in KCNQ1 alter its interaction with KCNE1. In E1R/R4E KCNQ1, a mutant with constitutively activated voltage sensors, F56Bpa and F57Bpa KCNE1 were cross-linked in open and closed states, respectively, which suggests that their actions are mediated mainly by modulation of KCNQ1 pore function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。