Optimization of the mechanical properties of polyester/coconut shell ash (CSA) composite for light-weight engineering applications

优化聚酯/椰壳灰 (CSA) 复合材料的机械性能以适应轻质工程应用

阅读:6
作者:O O Daramola, A A Akinwande, A A Adediran, O A Balogun, J L Olajide, K J Adedoyin, B O Adewuyi, T C Jen

Abstract

The mechanical properties of coconut shell ash (CSA) reinforced polyester composite have been optimized. Various test specimens were developed by dispersing 10, 20, 30 and 40 wt.%, of CSA in unsaturated polyester resin in decreasing particle sizes of 40, 30, and 20 µm in an open mould using hand lay-up technique. Tensile, flexural, and impact strengths, as well as tensile and flexural moduli and Shore D hardness of all test samples were determined. The results showed that 10-20 wt.% CSA increased tensile, flexural, impact strengths and flexural modulus for all particle sizes, but 30-40 wt. % CSA engendered depreciation in corresponding performance. For all particle sizes, 10-40 wt. percent CSA resulted in an increase in tensile strength, whereas 10-40 wt. percent resulted into a linear increase in Shore D hardness. Further observation portrayed that in each case, the finest CSA (20 µm) have the optimum result. Statistical analysis carried out on experimental outcomes confirmed the experimental variables (particle proportion and sizes) to be significant. From the surface plot, the strength responses revealed more dependence on the individual variables than their interactions. Regression models developed for individual responses are termed statistically fit in representing the experimental data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。