Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element

肉芽组织成纤维细胞中 α-平滑肌肌动蛋白表达的调节依赖于内含子 CArG 元件和转化生长因子-β1 控制元件

阅读:6
作者:James J Tomasek, Joel McRae, Gary K Owens, Carol J Haaksma

Abstract

Myofibroblasts are specialized contractile fibroblasts that are critical in wound closure and tissue contracture. Generation of contractile force is correlated with the expression of alpha-smooth muscle actin (alpha-SMA); however, little is known regarding molecular mechanisms that control activation of alpha-SMA in myofibroblasts in granulation tissue. The aims of the present studies were to identify sufficient promoter regions required for alpha-SMA expression in myofibroblasts in vivo and to determine whether activation of alpha-SMA expression in myofibroblasts in vivo is dependent on an intronic CArG [CC(A/T)6GG] and a transforming growth factor-beta1 control element (TCE) that are required for alpha-SMA expression in smooth muscle cells. A Lac Z transgene construct from -2600 through the first intron was expressed in myofibroblasts within granulation tissue of cutaneous wounds in a pattern that closely mimicked endogenous alpha-SMA expression. Mutation of either the intronic CArG element or the TCE completely inhibited transgene expression in myofibroblasts in granulation tissue and responsiveness to transforming growth factor-beta1 in cultured transgenic fibroblasts. These same elements were also critical in regulating alpha-SMA expression during skeletal muscle repair but not during skeletal muscle development. Taken together, these results provide the first in vivo evidence for the importance of the intronic CArG and TCE cis-elements in the regulation of alpha-SMA expression in myofibroblasts in granulation tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。