Background
High-mobility group box 1 (HMGB1) was observed to be an important extracellular mediator involved in vascular inflammation associated with subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of 4'-O-β-D-glucosyl-5-O-methylvisamminol (4OGOMV), C22H28O10, on the alternation of cytokines and HMGB1 in an animal model.
Conclusion
4OGOMV exerts its neuro-protective effect partly through the dual effect of inhibiting IL-6 and MCP-1 activation and also reduced HMGB1 protein, mRNA and MCP-1(+) leukocytes translocation. This study lends credence to validating 4OGOMV as able to attenuate pro-inflammatory cytokine mRNA, late-onset inflammasome, and cellular basis in SAH-induced vasospasm.
Methods
A rodent double hemorrhage SAH model was employed. Administration with 4OGOMV was initiated 1 h after animals were subjected to SAH. Basilar arteries (BAs) were harvested and cortexes examined for HMGB1 mRNA, protein expression (Western blot) and monocyte chemoattractant protein-1 (MCP-1) immunostaining. Cerebrospinal fluid samples were collected to examine IL-1β, IL-6, IL-8 and MCP-1 (rt-PCR).
Results
Morphological findings revealed endothelial cell deformity, intravascular elastic lamina torture, and smooth muscle necrosis in the vessels of SAH groups. Correspondently, IL-1β, IL-6 and MCP-1 in the SAH-only and SAH-plus vehicle groups was also elevated. 4OGOMV dose-dependently reduced HMGB1 protein expression when compared with the SAH groups.(p < 0.01) Likewise, 400 μg/kg 4OGOMV reduced IL-1β, MCP-1 and HMGB1 mRNA levels as well as MCP-1(+) monocytes when compared with the SAH groups..
