DNA Damage-Induced Phosphorylation of Histone H2A at Serine 15 Is Linked to DNA End Resection

DNA 损伤诱导的组蛋白 H2A 第 15 位丝氨酸磷酸化与 DNA 末端切除有关

阅读:4
作者:Salar Ahmad, Valérie Côté, Jacques Côté

Abstract

The repair of DNA double-strand breaks (DSBs) occurs in chromatin, and several histone posttranslational modifications have been implicated in the process. Modifications of the histone H2A N-terminal tail have also been linked to DNA damage response, through acetylation or ubiquitination of lysine residues that regulate repair pathway choice. Here, we characterize a new DNA damage-induced phosphorylation on chromatin, at serine 15 of H2A in yeast. We show that this SQ motif functions independently of the classical S129 C-terminal site (γ-H2A) and that mutant-mimicking constitutive phosphorylation increases cell sensitivity to DNA damage. H2AS129ph is induced by Tel1ATM and Mec1ATR, and the loss of Lcd1ATRIP or Mec1 signaling decreases γ-H2A spreading distal to the DSB. In contrast, H2AS15ph is completely dependent on Lcd1ATRIP, indicating that this modification only happens when end resection is engaged. This is supported by an increase in replication protein A (RPA) and a decrease in DNA signal near the DSB in H2A-S15E phosphomimic mutants, indicating higher resection. In mammals, this serine is replaced by a lysine (H2AK15) which undergoes an acetyl-monoubiquityl switch to regulate binding of 53BP1 and resection. This regulation seems functionally conserved with budding yeast H2AS15 and 53BP1-homolog Rad9, using different posttranslational modifications between organisms but achieving the same function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。