Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy

在 MCD 饮食小鼠部分肝切除术中,肝脏脂质超载对 HGF 表达通过 SphK1/S1PR2 通路促进的加速肝细胞增殖的影响

阅读:10
作者:Baljinnyam Lkham-Erdene, Narantsog Choijookhuu, Toshiki Kubota, Tomofumi Uto, Shuya Mitoma, Shinichiro Shirouzu, Takumi Ishizuka, Kengo Kai, Kazuhiro Higuchi, Kham Mo Aung, Jargal-Erdene Batmunkh, Katsuaki Sato, Yoshitaka Hishikawa

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming a major health problem worldwide. Liver regeneration is crucial for restoring liver function, and is regulated by extraordinary complex process, involving numerous factors under both physiologic and pathologic conditions. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid synthesized by sphingosine kinase 1 (SphK1), plays an important role in liver function through S1P receptors (S1PRs)-expressing cells. In this study, we investigated the effect of lipid overload on hepatocyte proliferation in a mouse hepatic steatosis model induced by feeding a methionine- and choline-deficient (MCD) diet. After 50% partial hepatectomy (PHx), liver tissues were sampled at various timepoints and then analyzed by immunohistochemistry, oil Red-O staining, quantitative-polymerase chain reaction (qPCR), and flow cytometry. In mice fed the MCD-diet, significantly exacerbated hepatic steatosis and accelerated liver regeneration were observed. After PHx, hepatocyte proliferation peaked at 48 and 36 hr in the liver of chow- and MCD-diet fed mice, respectively. By contrast, increased expression of S1PR2 was observed in hepatic neutrophils and macrophages of MCD-diet fed mice. Flow cytometry and qPCR experiments demonstrated that levels of HGF and FGF2 released by neutrophils and macrophages were significantly higher in MCD-diet fed mice. In conclusion, hepatic lipid overload recruits Kupffer cells and neutrophils that release HGF and FGF2 via SphK1/S1PR2 activation to accelerate hepatocyte proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。