Exercise-Induced Circulating Hematopoietic Stem and Progenitor Cells in Well-Trained Subjects

运动诱导的循环造血干细胞和祖细胞在训练有素的受试者中

阅读:5
作者:Julia M Kröpfl, Fernando G Beltrami, Hans-Jürgen Gruber, Ingeborg Stelzer, Christina M Spengler

Abstract

It has been proposed that exercise-induced systemic oxidative stress increases circulating hematopoietic stem and progenitor cell (HPC) number in active participants, while HPC clonogenicity is reduced post-exercise. However, HPCs could be protected against exercise-induced reactive oxygen species in a trained state. Therefore, we characterized the acute exercise-induced HPC profile of well-trained participants including cell number, clonogenicity, and clearance. Twenty-one healthy, well-trained participants-12 runners, 9 cyclists; age 30.0 (4.3) years-performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with 3-min low-intensity in-between, which is known to elicit oxidative stress. Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and 10 min after exercise, CD34+/45dim cell number and clonogenicity, total oxidative (TOC), and antioxidative (TAC) capacities, as well as CD31 expression on detected HPCs were investigated. TOC significantly decreased from 0.093 (0.059) nmol/l to 0.083 (0.052) nmol/l post-exercise (p = 0.044). Although HPC proportions significantly declined below baseline (from 0.103 (0.037)% to 0.079 (0.028)% of mononuclear cells, p < 0.001), HPC concentrations increased post-exercise [2.10 (0.75) cells/μl to 2.46 (0.98) cells/μl, p = 0.002] without interaction between exercise modalities, while HPC clonogenicity was unaffected. Relating HPC concentrations and clonogenicity to exercise session specific (anti-) oxidative parameters, no association was found. CD31 median fluorescent intensity expression on detected HPCs was diminished post-exercise [from 1,675.9 (661.0) to 1,527.1 (558.9), p = 0.023] and positively correlated with TOC (r rm = 0.60, p = 0.005). These results suggest that acute exercise-reduced oxidative stress influences HPC clearance but not mobilization in well-trained participants. Furthermore, a well-trained state protected HPCs' clonogenicity from post-exercise decline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。