Inverse resolution of spatially varying diffusion coefficient using Physics-Informed neural networks

使用物理信息神经网络对空间变化扩散系数进行逆向解析

阅读:20
作者:Sukirt Thakur, Ehsan Esmaili, Sarah Libring, Luis Solorio, Arezoo M Ardekani

Abstract

Resolving the diffusion coefficient is a key element in many biological and engineering systems, including pharmacological drug transport and fluid mechanics analyses. Additionally, these systems often have spatial variation in the diffusion coefficient which must be determined, such as for injectable drug-eluting implants into heterogeneous tissues. Unfortunately, obtaining the diffusion coefficient from images in such cases is an inverse problem with only discrete data points. The development of a robust method that can work with such noisy and ill-posed datasets to accurately determine spatially-varying diffusion coefficients is of great value across a large range of disciplines. Here, we developed an inverse solver that uses physics informed neural networks (PINNs) to calculate spatially-varying diffusion coefficients from numerical and experimental image data in varying biological and engineering applications. The residual of the transient diffusion equation for a concentration field is minimized to find the diffusion coefficient. The robustness of the method as an inverse solver was tested using both numerical and experimental datasets. The predictions show good agreement with both the numerical and experimental benchmarks; an error of less than 6.31% was obtained against all numerical benchmarks, while the diffusion coefficient calculated in experimental datasets matches the appropriate ranges of other reported literature values. Our work demonstrates the potential of using PINNs to resolve spatially-varying diffusion coefficients, which may aid a wide-range of applications, such as enabling better-designed drug-eluting implants for regenerative medicine or oncology fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。