Cited4a limits cardiomyocyte dedifferentiation and proliferation during zebrafish heart regeneration

Cited4a 限制斑马鱼心脏再生过程中心肌细胞的去分化和增殖

阅读:9
作者:Rachel Forman-Rubinsky, Wei Feng, Brent T Schlegel, Angela Paul, Daniel Zuppo, Katarzyna Kedziora, Donna Stoltz, Simon Watkins, Dhivyaa Rajasundaram, Guang Li, Michael Tsang

Abstract

Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart. These cardiomyocyte populations have diverse functions, including stress response, myofibril assembly, proliferation and contraction. The contracting cardiomyocyte population also involves the activation of maturation pathways as an early response to injury. This intriguing finding suggests that constant maintenance of a distinctive terminally differentiated cardiomyocyte population is important for cardiac function during regeneration. To test this hypothesis, we determined that cited4a, a p300/CBP transcriptional coactivator, is induced after injury in the mature cardiomyocyte population. Moreover, loss-of-cited4a mutants presented increased dedifferentiation, proliferation and accelerated heart regeneration. Thus, suppressing cardiomyocyte maturation pathway activity in injured hearts could be an approach to promote heart regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。