Sensory neuron transcriptomes reveal complex neuron-specific function and regulation of mec-2/Stomatin splicing

感觉神经元转录组揭示复杂的神经元特异性功能和 mec-2/Stomatin 剪接的调节

阅读:6
作者:Xiaoyu Liang, Canyon Calovich-Benne, Adam Norris

Abstract

The function and identity of a cell is shaped by transcription factors controlling transcriptional networks, and further shaped by RNA binding proteins controlling post-transcriptional networks. To overcome limitations inherent to analysis of sparse single-cell post-transcriptional data, we leverage the invariant Caenorhabditis elegans cell lineage, isolating thousands of identical neuron types from thousands of isogenic individuals. The resulting deep transcriptomes facilitate splicing network analysis due to increased sequencing depth and uniformity. We focus on mechanosensory touch-neuron splicing regulated by MEC-8/RBPMS. We identify a small MEC-8-regulated network, where MEC-8 establishes touch-neuron isoforms differing from default isoforms found in other cells. MEC-8 establishes the canonical long mec-2/Stomatin isoform in touch neurons, but surprisingly the non-canonical short isoform predominates in other neurons, including olfactory neurons, and mec-2 is required for olfaction. Forced endogenous isoform-specific expression reveals that the short isoform functions in olfaction but not mechanosensation. The long isoform is functional in both processes. Remarkably, restoring the long isoform completely rescues mec-8 mutant mechanosensation, indicating a single MEC-8 touch-neuron target is phenotypically relevant. Within the long isoform we identify a cassette exon further diversifying mec-2 into long/extra-long isoforms. Neither is sufficient for mechanosensation. Both are simultaneously required, likely functioning as heteromers to mediate mechanosensation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。