Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs

通过单个 mRNA 中观察到的非平衡 5'-UTR 展开精确调节细菌翻译起始

阅读:11
作者:Sujay Ray, Shiba S Dandpat, Surajit Chatterjee, Nils G Walter

Abstract

Noncoding, structured 5'-untranslated regions (5'-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5'-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5'-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5'-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5'-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5'-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。