Protein Interactions Network of Hepatitis E Virus RNA and Polymerase With Host Proteins

戊型肝炎病毒 RNA 和聚合酶与宿主蛋白的蛋白质相互作用网络

阅读:6
作者:Gayatri D Kanade, Kunal D Pingale, Yogesh A Karpe

Abstract

Host-pathogen interactions are crucial for the successful propagation of pathogens inside the host cell. Knowledge of interactions between host proteins and viral proteins or viral RNA may provide clues for developing novel antiviral strategies. Hepatitis E virus (HEV), a water-borne pathogen that causes acute hepatitis in humans, is responsible for epidemics in developing countries. HEV pathology and molecular biology have been poorly explored due to the lack of efficient culture systems. A contemporary approach, to better understand the viral infection cycle at the molecular level, is the use of system biology tools depicting virus-host interactions. To determine the host proteins which participate in the regulation of HEV replication, we indentified liver cell proteins interacting with HEV RNA at its putative promoter region and those interacting with HEV polymerase (RdRp) protein. We employed affinity chromatography followed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to identify the interacting host proteins. Protein-protein interaction networks (PPI) were plotted and analyzed using web-based tools. Topological analysis of the network revealed that the constructed network is potentially significant and relevant for viral replication. Gene ontology and pathway enrichment analysis revealed that HEV RNA promoter- and polymerase-interacting host proteins belong to different cellular pathways such as RNA splicing, RNA metabolism, protein processing in endoplasmic reticulum, unfolded protein response, innate immune pathways, secretory vesicle pathway, and glucose metabolism. We showed that hnRNPK and hnRNPA2B1 interact with both HEV putative promoters and HEV RdRp, which suggest that they may have crucial roles in HEV replication. We demonstrated in vitro binding of hnRNPK and hnRNPA2B1 proteins with the HEV targets in the study, assuring the authenticity of the interactions obtained through mass spectrometry. Thus, our study highlights the ability of viruses, such as HEV, to maneuver host systems to create favorable cellular environments for virus propagation. Studying the host-virus interactions can facilitate the identification of antiviral therapeutic strategies and novel targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。