UV-Triggered Hydrogel Coating of the Double Network Polyelectrolytes for Enhanced Endothelialization

紫外线引发的双网络聚电解质水凝胶涂层可增强内皮化

阅读:5
作者:Xing-Wang Wang, Yi-Jing Yin, Jing Wang, Hong-Mei Yu, Qian Tang, Zhao-Yang Chen, Guo-Sheng Fu, Ke-Feng Ren, Jian Ji, Lu Yu

Abstract

The left atrial appendage (LAA) occluder is an important medical device for closing the LAA and preventing stroke. The device-related thrombus (DRT) prevents the implantation of the occluder in exerting the desired therapeutic effect, which is primarily caused by the delayed endothelialization of the occluder. Functional coatings are an effective strategy for accelerating the endothelialization of occluders. However, the occluder surface area is particularly large and structurally complex, and the device is subjected to a large shear friction in the sheath during implantation, which poses a significant challenge to the coating. Herein, a hydrogel coating by the in situ UV-triggered polymerization of double-network polyelectrolytes is reported. The findings reveal that the double network and electrostatic interactions between the networks resulted in excellent mechanical properties of the hydrogel coating. The sulfonate and Arg-Gly-Asp (RGD) groups in the coating promoted hemocompatibility and endothelial growth of the occluder, respectively. The coating significantly accelerated the endothelialization of the LAA occluder in a canine model is further demonstrated. This study has potential clinical benefits in reducing both the incidence of DRT and the postoperative anticoagulant course for LAA closure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。