Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose

通过以特定能量剂量在水中进行脉冲激光碎裂来调节钴铁氧体纳米粒子的催化性能

阅读:5
作者:Friedrich Waag, Bilal Gökce, Chakrapani Kalapu, Georg Bendt, Soma Salamon, Joachim Landers, Ulrich Hagemann, Markus Heidelmann, Stephan Schulz, Heiko Wende, Nils Hartmann, Malte Behrens, Stephan Barcikowski

Abstract

Highly active, structurally disordered CoFe2O4/CoO electrocatalysts are synthesized by pulsed laser fragmentation in liquid (PLFL) of a commercial CoFe2O4 powder dispersed in water. A partial transformation of the CoFe2O4 educt to CoO is observed and proposed to be a thermal decomposition process induced by the picosecond pulsed laser irradiation. The overpotential in the OER in aqueous alkaline media at 10 mA cm-2 is reduced by 23% compared to the educt down to 0.32 V with a Tafel slope of 71 mV dec-1. Importantly, the catalytic activity is systematically adjustable by the number of PLFL treatment cycles. The occurrence of thermal melting and decomposition during one PLFL cycle is verified by modelling the laser beam energy distribution within the irradiated colloid volume and comparing the by single particles absorbed part to threshold energies. Thermal decomposition leads to a massive reduction in particle size and crystal transformations towards crystalline CoO and amorphous CoFe2O4. Subsequently, thermal melting forms multi-phase spherical and network-like particles. Additionally, Fe-based layered double hydroxides at higher process cycle repetitions emerge as a byproduct. The results show that PLFL is a promising method that allows modification of the structural order in oxides and thus access to catalytically interesting materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。