Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice

肾近端小管上皮细胞特异性过度表达 netrin-1 通过抑制链脲佐菌素诱发的糖尿病小鼠中 COX-2 介导的 PGE2 产生来抑制炎症和白蛋白尿

阅读:4
作者:Riyaz Mohamed, Calpurnia Jayakumar, Punithavathi V Ranganathan, Vadivel Ganapathy, Ganesan Ramesh

Abstract

Inflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals. Kidney function, fibrosis, glucose excretion, albuminuria, and inflammation were evaluated. The mechanism of netrin-1-induced suppression of inflammation was studied in vitro using a proximal tubular epithelial cell line. Diabetes was associated with increased infiltration of neutrophils and macrophages, chemokine expression, and tubular epithelial cell apoptosis in kidney. These changes were minimal in kidney of netrin-1 transgenic mice. In addition, diabetes induced a large increase in the excretion of prostaglandin E2 (PGE2) in urine, which was suppressed in netrin-1 transgenic mice. Netrin-1-induced suppression of PGE2 production was mediated through suppression of NFκB-mediated cyclooxygenase-2 (COX-2) in renal tubular epithelial cells. Furthermore, netrin-1 also increased albumin uptake by proximal tubular epithelial cells through the PI3K and ERK pathways without increasing glucose uptake. These findings suggest that netrin-1 is a major regulator of inflammation and apoptosis in diabetic nephropathy and may be a useful therapeutic molecule for treating chronic kidney diseases such as diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。