The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators

介体存在下Lac-W漆酶高效降解多种霉菌毒素

阅读:6
作者:Mengshuang Jia, Xiaohu Yu, Kun Xu, Xiaodan Gu, Nicholas J Harmer, Youbao Zhao, Yuqiang Xiang, Xia Sheng, Chenglong Li, Xiang-Dang Du, Jiajia Pan, Wenbo Hao

Abstract

Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is a laccase with the unique property of degrading these six mycotoxins in the absence of redox mediators. Nevertheless, their degradation rates are low. This work aims to improve the ability of Lac-W to degrade these six mycotoxins and to elucidate its detoxification mechanism. Including redox mediators increased the Lac-W degradation efficiency drastically, and completely degraded AFB1 and ZEN within one hour. Additionally, Lac-W-AS has good temperature, pH, and ions adaptability in ZEN degradation. Lac-W-AS reduced the ZEN toxicity because ZEN degradation products significantly restored the bioluminescence intensity of Vibrio fischeri. A Lac-W-AS-mediated oxidation product of ZEN was structurally characterized as 15-OH-ZEN by UHPLC-MS/MS. Linear sweep voltammetry showed that AS affected the potential of Lac-W and accelerated the oxidation of ZEN. Finally, the combination of mediators (acetosyringone and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) improved the degradation rate of mycotoxins. This work highlights that the combination of Lac-W with mediators serves as a good candidate for degrading multi-mycotoxin contaminants in food and feedstuff.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。