Development and validation of a nomogram for premature coronary artery disease patients in Guangzhou

广州地区早发冠状动脉疾病患者列线图的建立与验证

阅读:7
作者:Runlu Sun, Qi Guo, Hongwei Li, Xiao Liu, Yuan Jiang, Jingfeng Wang, Yuling Zhang

Background

Data regarding risk factors for premature coronary artery disease (PCAD) is scarce given that few research focus on it. This study aimed to develop and validate a clinical nomogram for PCAD patients in Guangzhou.

Conclusions

In conclusion, the seven-factor nomogram can achieve a reasonable relationship with PCAD, and a large cohort were needed to enhance the credibility and effectiveness of our model in future.

Methods

We recruited 108 PCAD patients (female ≤65 years old and male ≤55 years old) and 96 healthy controls from Sun Yat-sen Memorial Hospital of Sun Yat-sen University between 01/01/2021 and 31/12/2022. Twenty potentially relevant indicators of PCAD were extracted. Next, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to optimize variable selection. The nomogram was developed based on the selected variables visually.

Results

Independent risk factors, including body mass index (BMI), history of PCAD, glucose, Apolipoprotein A1(ApoA1), high density lipoprotein 2-cholesterol (HDL2-C), total cholesterol and triglyceride, were identified by LASSO and logistic regression analysis. The nomogram showed accurate discrimination (area under the receiver operator characteristic curve, ROC, 87.45 %, 95 % CI: 82.58 %-92.32 %). Decision curve analysis (DCA) suggested that the nomogram was clinical beneficial. HDL2, one risk factor, was isolated by a two-step discontinuous density-gradient ultracentrifugation method. And HDL2 from PCAD patients exhibited less 3H-cholesterol efflux (22.17 % vs 26.64 %, P < 0.05) and less delivery of NBD-cholesterol detecting by confocal microscope compared with healthy controls. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。