Importance of uterine cell death, renewal, and their hormonal regulation in hamsters that show progesterone-dependent implantation

子宫细胞死亡、更新及其激素调节对表现出孕酮依赖性着床的仓鼠的重要性

阅读:7
作者:Qian Zhang, Bibhash C Paria

Abstract

This study was initiated to investigate the significance of uterine cell death and proliferation during the estrous cycle and early pregnancy and their correlation with sex steroids in hamsters where blastocyst implantation occurs in only progesterone-primed uteri. The results obtained in hamsters were also compared with mice where blastocyst implantation occurs in progesterone-primed uteri if estrogen is provided. Apoptotic cells in the uterus were detected by using terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) technique. Uterine cell proliferation was determined by 5-bromo-2'-deoxyuridine labeling followed by immunohistochemistry and methyl-tritiated [(3)H]thymidine labeling. Active caspase-3, an executor protein of cell death, expression was assayed by immunohistochemistry/immunofluorescence. Our results demonstrate that epithelial proliferation on the second day after mating marks the initiation of pregnancy-related uterine changes in both species despite their differences in hormonal requirements. Hamsters and mice showed subtle differences in uterine proliferative and apoptotic patterns during early pregnancy and in response to steroids. There existed almost a direct correlation between apoptosis and caspase-3 expression, suggesting uterine cell death mostly involves the caspase pathway. Consistent with these findings, we showed, for the first time, that execution of uterine epithelial cell apoptosis by caspase-3 is important for blastocyst implantation because a caspsase-3 inhibitor N-acetyl-DEVD-CHO when instilled inside the uterine lumen on d 3 of pregnancy inhibits implantation in hamsters and mice. The overall results indicate that uterine cell apoptosis and proliferation patterns are highly ordered cell-specific phenomena that play an important role in maintaining the sexual cycle and pregnancy-associated uterine changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。