An improved method for the in vitro evolution of aptamers and applications in protein detection and purification

适体的体外进化改进方法及其在蛋白质检测和纯化中的应用

阅读:7
作者:Michael B Murphy, Shirin T Fuller, Paul M Richardson, Sharon A Doyle

Abstract

One of the key components of proteomics initiatives is the production of high affinity ligands or probes that specifically recognize protein targets in assays that detect and capture proteins of interest. Particularly versatile probes with tremendous potential for use as affinity molecules are aptamers. Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on affinity for a target molecule. Aptamers offer advantages over traditional antibody-based affinity molecules in their ease of production, regeneration and stability, largely due to the chemical properties of nucleic acids versus amino acids. We describe an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. We demonstrate the ability of aptamers that recognize thyroid transcription factor 1 (TTF1) to bind their target protein with high affinity and specificity, and detail their uses in a number of assays. The TTF1 aptamers were characterized using surface plasmon resonance, and shown to be useful for enzyme-linked assays, western blots and affinity purification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。