p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis

通过NRF2-PARP1轴介导的p53依赖性DNA复制完整性与氧化还原代谢之间的串扰

阅读:9
作者:Gamal Ahmed Elfar, Obed Aning, Tsz Wai Ngai, Pearlyn Yeo, Joel Wai Kit Chan, Shang Hong Sim, Leonard Goh, Ju Yuan, Cheryl Zi Jin Phua, Joanna Zhen Zhen Yeo, Shi Ya Mak, Brian Kim Poh Goh, Pierce Kah-Hoe Chow, Wai Leong Tam, Ying Swan Ho, Chit Fang Cheok

Abstract

Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。