HIF-1α and miR-210 differential and lineage-specific expression in systemic lupus erythematosus

系统性红斑狼疮中 HIF-1α 和 miR-210 的差异和谱系特异性表达

阅读:12
作者:Barry Garchow, Yvan Maque Acosta, Marianthi Kiriakidou

Abstract

Systemic lupus erythematosus (SLE, lupus) is a chronic autoimmune disease characterized by loss of peripheral tolerance to nuclear self-antigens. It is increasingly recognized that aberrant T cell metabolism is a critical mediator of SLE immunopathology. Hypoxia inducible factor 1⍺ (HIF-1α) is a key transcription factor that regulates T cell metabolism in response to immune stimuli. T cell activation induces HIF-1α expression and transcriptional activation of HIF-responsive genes. HypoxamiRs are a group of microRNAs sensitive to HIF-1α transcriptional regulation that function to fine-tune the HIF-driven transcriptional program. The 'master' hypoxamiR, miR-210 is transcriptionally regulated by HIF-1α and negatively regulates HIF-1α activity. Although a key role for HIF-1α in has been described in a number of autoimmune and inflammatory diseases and abnormal microRNA expression profiles correlate with poor clinical outcome in a number of rheumatologic diseases, the expression and function of HIF-1α and miR-210 in lupus remains largely uncharacterized. Here we report HIF-1α and miR-210 differential and lineage-specific expression in systemic lupus erythematosus. We show that HIF-1α mRNA and protein is overexpressed in human lupus CD4+ cells but not in CD8+ or CD19+ cells. RORγt, was upregulated in human lupus lymphocytes while FoxP3 expression remained unchanged. We show that miR-210 expression in lupus-prone mice correlates with disease activity and is robustly and selectively upregulated in CD4+ cells from both human lupus patients and lupus-prone mice. Our results suggest that abnormal HIF-1α and miR-210 expression contributes to SLE immune pathology and that HIF-1α/miR-210 may represent a novel and important regulatory axis in SLE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。