The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs

真菌 RNA 结合蛋白 Rrm4 介导 ubi1 和 rho3 mRNA 的长距离运输

阅读:9
作者:Julian König, Sebastian Baumann, Janine Koepke, Thomas Pohlmann, Kathi Zarnack, Michael Feldbrügge

Abstract

Cytoskeletal transport promotes polar growth in filamentous fungi. In Ustilago maydis, the RNA-binding protein Rrm4 shuttles along microtubules and is crucial for polarity in infectious filaments. Mutations in the RNA-binding domain cause loss of function. However, it was unclear which RNAs are bound and transported. Here, we applied in vivo RNA binding studies and live imaging to determine the molecular function of Rrm4. This new combination revealed that Rrm4 mediates microtubule-dependent transport of distinct mRNAs encoding, for example, the ubiquitin fusion protein Ubi1 and the small G protein Rho3. These transcripts accumulate in ribonucleoprotein particles (mRNPs) that move bidirectionally along microtubules and co-localise with Rrm4. Importantly, the 3' untranslated region of ubi1 containing a CA-rich binding site functions as zipcode during mRNA transport. Furthermore, motile mRNPs are not formed when the RNA-binding domain of Rrm4 is deleted, although the protein is still shuttling. Thus, Rrm4 constitutes an integral component of the transport machinery. We propose that microtubule-dependent mRNP trafficking is crucial for hyphal growth introducing U. maydis as attractive model for studying mRNA transport in higher eukaryotes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。