Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription

APC 肿瘤抑制因子的核输出控制 β-catenin 的转录功能

阅读:8
作者:Rina Rosin-Arbesfeld, Adam Cliffe, Thomas Brabletz, Mariann Bienz

Abstract

The adenomatous polyposis coli (APC) protein is inactivated in most colorectal tumours. APC loss is an early event in tumorigenesis, and causes an increase of nuclear beta-catenin and its transcriptional activity. This is thought to be the driving force for tumour progression. APC shuttles in and out of the nucleus, but the functional significance of this has been controversial. Here, we show that APC truncations are nuclear in colorectal cancer cells and adenocarcinomas, and this correlates with loss of centrally located nuclear export signals. These signals confer efficient nuclear export as measured directly by fluorescence loss in photobleaching (FLIP), and they are critical for the function of APC in reducing the transcriptional activity of beta-catenin in complementation assays of APC mutant colorectal cancer cells. Importantly, targeting a functional APC construct to the nucleus causes a striking nuclear accumulation of beta-catenin without changing its transcriptional activity. Our evidence indicates that the rate of nuclear export of APC, rather than its nuclear import or steady-state levels, determines the transcriptional activity of beta-catenin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。