Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation

线粒体天冬氨酸氨基转移酶 (GOT2) 蛋白作为公鸡精子冷冻保存中潜在的冷冻损伤生物标志物

阅读:8
作者:Yunhe Zong, Yunlei Li, Yanyan Sun, Xintong Han, Jingwei Yuan, Lin Ma, Hui Ma, Jilan Chen

Abstract

Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa. Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate aspartate shuttle, which is ubiquitous in mitochondria and is associated with cellular metabolism regulation. Thus, this study is the first to investigate GOT2 biological role in chicken spermatozoa during freezing process. The results showed that the sperm total motility, straight-line velocity (VSL) and mitochondrial membrane potential (MMP) of the frozen group were significantly lower than these of the fresh group (P < 0.05). The fresh sperm mitochondrial membrane was continuous and mitochondrial matrix was dense and homogeneous. However, after the freezing-thawing, the density of the matrix was reduced, and the mitochondria appeared slightly swollen and membrane damaged. In chicken sperm, the GOT2 protein was localized in the head and the midpiece of spermatozoa where mitochondria are located by immunostaining analysis. This was consistent with the subcellular localization prediction. GOT2 protein was more abundant in the fresh sperm than in the frozen sperm, which indicated that freezing may lead to sperm mitochondrial damage, reduced GOT protein expression, and affected sperm motility and fertility. The protein-protein interaction prediction of GOT2 protein indicated that its ten most confident interactors were predominantly mitochondria-related proteins. The binding ability was higher between GOT2 protein and two mitochondria-targeted antioxidants, SkQ1 and Mito-TEMPO, respectively. In conclusion, GOT2 played an important role in chicken spermatozoa, which was possibly associated with the regulation of mitochondria function and spermatozoa metabolism. Moreover, it may be a potential cryodamage improvement target for spermatozoa. However, the underlying mechanism of GOT2 in spermatozoa cryopreservation needs further exploration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。