Low-intensity pulsed ultrasound induces multifaced alterations in chromosome segregation, cytoskeletal filaments and cell junctions

低强度脉冲超声引起染色体分离、细胞骨架丝和细胞连接的多方面改变

阅读:6
作者:Ion Udroiu, Federica Todaro, Alessandra Vitaliti, Damiano Palmieri, Eugenia Guida, Giulia Perilli, Leonardo Duranti, Cadia D'Ottavi, Maurizio Mattei, Susanna Dolci, Gaio Paradossi, Angelico Bedini, Ida Silvestri, Antonella Sgura, Fabio Domenici0

Abstract

Low-intensity pulsed ultrasound (LIPUS) is a widely used non-invasive approach with therapeutic purposes since it provides physical stimulation with minimal thermal effects. The skin epithelium is the first barrier of the human body that interfaces with LIPUS and is subjected to the highest intensity. Little is known about the impact of LIPUS on the skin surface. This work investigates the biological effects of one-hour exposure to 1 MHz LIPUS on human keratinocytes HaCaT and tumoral SK-MEL-28 skin cells. Specifically, we evaluated the cellular state immediately after LIPUS treatment by analyzing cytogenetic endpoints and the response of cytoskeleton and cell junction proteins. Herein we demonstrate that LIPUS induces genomic damage as shown by an increase of chromosome malsegregation and a consequent decrease of cellular proliferation. The mechanical stimulus produced by LIPUS is also transmitted to the cytoskeletal compartment, inducing the expression and re-organization of junction proteins (i.e., E-cadherin and Desmosomes) and intermediate filaments (i.e., F-actin and Cytokeratins) with impact on cell morphology and cell adhesion. These in vitro results highlight the different outcomes following the cytogenetic damage and the resilience response exerted by the cytoskeleton upon mechanical stress, laying the foundation for future in vivo investigations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。