Retardation of Aβ42 fibril formation by apolipoprotein A-I and recombinant HDL particles

载脂蛋白AI和重组HDL颗粒抑制Aβ42原纤维的形成

阅读:6
作者:Rebecca Frankel, Emma Sparr, Sara Linse

Abstract

The double nucleation mechanism of amyloid β (Aβ) peptide aggregation is retained from buffer to cerebrospinal fluid (CSF) but with reduced rate of all microscopic processes. Here, we used a bottom-up approach to identify retarding factors in CSF. We investigated the Aβ42 fibril formation as a function of time in the absence and presence of apolipoprotein A-I (ApoA-I), recombinant high-density lipoprotein (rHDL) particles, or lipid vesicles. A retardation was observed in the presence of ApoA-I or rHDL particles, most pronounced with ApoA-I, but not with lipid vesicles. Global kinetic analysis implies that rHDL interferes with secondary nucleation. The effect of ApoA-I could best be described as an interference with secondary and to a smaller extent primary nucleation. Using surface plasmon resonance and microfluidics diffusional sizing analyses, we find that both rHDL and ApoA-I interact with Aβ42 fibrils but not Aβ42 monomer, thus the effect on kinetics seems to involve interference with the catalytic surface for secondary nucleation. The Aβ42 fibrils were imaged using cryogenic-electron microscopy and found to be longer when formed in the presence of ApoA-I or rHDL, compared to formation in buffer. A retarding effect, as observed in CSF, could be replicated using a simpler system, from key components present in CSF but purified from a CSF-free host. However, the effect of CSF is stronger implying the presence of additional retarding factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。