Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein

脉冲电场对酪蛋白胶束物理化学和结构性质的影响

阅读:10
作者:Ahmed Taha, Federico Casanova, Martynas Talaikis, Voitech Stankevič, Nerija Žurauskienė, Povilas Šimonis, Vidas Pakštas, Marijus Jurkūnas, Mohamed A E Gomaa, Arūnas Stirkė

Abstract

Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。