O-GlcNAcylation of circadian clock protein Bmal1 impairs cognitive function in diabetic mice

昼夜节律蛋白Bmal1的O-GlcNAc糖基化修饰会损害糖尿病小鼠的认知功能。

阅读:2
作者:Ya Hui # ,Yuanmei Zhong # ,Liuyu Kuang # ,Jingxi Xu # ,Yuqi Hao ,Jingxue Cao ,Tianpeng Zheng

Abstract

Neuronal damage in the hippocampus induced by high glucose has been shown to promote the onset and development of cognitive impairment in diabetes, but the underlying molecular mechanism remains unclear. Guided by single-cell RNA sequencing, we here report that high glucose increases O-GlcNAcylation of Bmal1 in hippocampal neurons. This glycosylation promotes the binding of Clock to Bmal1, resulting in the expression of transcription factor Bhlhe41 and its target Dnajb4. Upregulated Dnajb4 in turn leads to ubiquitination and degradation of the mitochondrial Na + /Ca2+ exchanger NCLX, thereby inducing mitochondrial calcium overload that causes neuronal damage and cognitive impairment in mice. Notably, Bhlhe41 downregulation or treatment with a short peptide that specifically blocks O-GlcNAcylation of Bmal1 on Ser424 mitigated these adverse effects in diabetic mouse models. These data highlight the crucial role of O-GlcNAcylation in circadian clock gene expression and may facilitate the design of targeted therapies for diabetes-associated cognitive impairment. Keywords: Bmal1-Clock Complex; Cognitive Impairment; Diabetes; Mitochondria Calcium Overload; O-GlcNAcylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。