Distinct isoforms of phospholipase A2 mediate the ability of Salmonella enterica serotype typhimurium and Shigella flexneri to induce the transepithelial migration of neutrophils

磷脂酶 A2 的不同亚型介导鼠伤寒沙门氏菌和弗氏志贺氏菌诱导中性粒细胞跨上皮迁移的能力

阅读:5
作者:Karen L Mumy, Jeffrey D Bien, Michael A Pazos, Karsten Gronert, Bryan P Hurley, Beth A McCormick

Abstract

Salmonella spp. and Shigella spp. are responsible for millions of cases of enteric disease each year worldwide. While these pathogens have evolved distinct strategies for interacting with the human intestinal epithelium, they both induce significant proinflammatory responses that result in massive transepithelial migration of neutrophils across the intestinal mucosa. It has previously been shown with Salmonella enterica serotype Typhimurium that the process of neutrophil transmigration is mediated in part by the secretion of hepoxilin A(3) (HXA(3); 8-hydroxy-11,12-epoxy-eicosatetraenoic acid), a potent neutrophil chemoattractant, from the apical surface of infected model intestinal epithelium. This study confirms that HXA(3) is also secreted in response to infection by Shigella flexneri, that it is produced by a pathway involving 12/15-lipoxygenase (12/15-LOX), and that S. enterica serovar Typhimurium and S. flexneri share certain elements in the mechanism(s) that underlies the otherwise separate signal transduction pathways that are engaged to induce polymorphonuclear leukocyte (PMN) transepithelial migration (protein kinase C and extracellular signal-regulated kinases 1 and 2, respectively). PMN transepithelial migration in response to infection with S. flexneri was dependent on 12/15-LOX activity, the enzyme responsible for the initial metabolism of arachidonic acid to HXA(3). Probing further into this pathway, we also found that S. enterica serovar Typhimurium and S. flexneri activate different subtypes of phospholipase A(2), a critical enzyme involved in the liberation of arachidonic acid from cellular membranes. Thus, although S. enterica serovar Typhimurium and S. flexneri utilize different mechanisms for triggering the induction of PMN transepithelial migration, we found that their reliance on 12/15-LOX is conserved, suggesting that enteric pathogens may ultimately stimulate similar pathways for the synthesis and release of HXA(3).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。