Modified Fields-Backofen and Zerilli-Armstrong constitutive models to predict the hot deformation behavior in titanium-based alloys

改进的 Fields-Backofen 和 Zerilli-Armstrong 本构模型用于预测钛基合金的热变形行为

阅读:6
作者:Abdallah Shokry

Abstract

This work presents modifications for two constitutive models for the prediction of the flow behavior of titanium-based alloys during hot deformation. The modified models are the phenomenological-based Fields-Backofen and the physical-based Zerilli-Armstrong. The modifications are derived and suggested by studying the hot deformation of titanium-based alloy Ti55531. The predictability of the modified models along with the original Fields-Backofen and another modified Zerilli-Armstong models is assessed and evaluated using the well-known statistical parameters correlation coefficient (R), Average Absolute Relative Error (AARE), and Root Mean Square Error (RMSE), for the Ti55531 alloy, and validated with other two different titanium-based alloys SP700 and TC4. The results show that the modified Fields-Backofen gives the best performance with R value of 0.996, AARE value of 3.34%, and RMSE value of 5.64 MPa, and the improved version of the modified Zerilli-Armstrong model comes in the second-best place with R value of 0.992, AARE value of 3.52%, and RMSE value of 9.15 MPa for the Ti55531 alloy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。