IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation

IncC 接合质粒和 SXT/R391 元件修复接合过程中由 CRISPR-Cas 引起的双链断裂

阅读:9
作者:David Roy, Kevin T Huguet, Frédéric Grenier, Vincent Burrus

Abstract

Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redβ and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。