Kinetic effects of myosin regulatory light chain phosphorylation on skeletal muscle contraction

肌球蛋白调节轻链磷酸化对骨骼肌收缩的动力学影响

阅读:4
作者:Julien S Davis, Colleen L Satorius, Neal D Epstein

Abstract

Kinetic analysis of contracting fast and slow rabbit muscle fibers in the presence of the tension inhibitor 2,3-butanedione monoxime suggests that regulatory light chain (RLC) phosphorylation up-regulates the flux of weakly attached cross-bridges entering the contractile cycle by increasing the actin-catalyzed release of phosphate from myosin. This step appears to be separate from earlier Ca(2+) regulated steps. Small step-stretches of single skinned fibers were used to study the effect of phosphorylation on fiber mechanics. Subdivision of the resultant tension transients into the Huxley-Simmons phases 1, 2(fast), 2(slow), 3, and 4 reveals that phosphorylation reduces the normalized amplitude of the delayed rise in tension (stretch activation response) by decreasing the amplitudes of phase 3 and, to a lesser extent, phase 2(slow). In slow fibers, the RLC P1 isoform phosphorylates at least 4-fold faster than the P2 isoform, complicating the role of RLC phosphorylation in heart and slow muscle. We discuss the functional relevance of the regulation of stretch activation by RLC phosphorylation for cardiac and other oscillating muscles and speculate how the interaction of the two heads of myosin could account for the inverse effect of Ca(2+) levels on isometric tension and rate of force redevelopment (k(TR)).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。