Self-replication of information-bearing nanoscale patterns

承载信息的纳米级图案的自我复制

阅读:11
作者:Tong Wang, Ruojie Sha, Rémi Dreyfus, Mirjam E Leunissen, Corinna Maass, David J Pine, Paul M Chaikin, Nadrian C Seeman

Abstract

DNA molecules provide what is probably the most iconic example of self-replication--the ability of a system to replicate, or make copies of, itself. In living cells the process is mediated by enzymes and occurs autonomously, with the number of replicas increasing exponentially over time without the need for external manipulation. Self-replication has also been implemented with synthetic systems, including RNA enzymes designed to undergo self-sustained exponential amplification. An exciting next step would be to use self-replication in materials fabrication, which requires robust and general systems capable of copying and amplifying functional materials or structures. Here we report a first development in this direction, using DNA tile motifs that can recognize and bind complementary tiles in a pre-programmed fashion. We first design tile motifs so they form a seven-tile seed sequence; then use the seeds to instruct the formation of a first generation of complementary seven-tile daughter sequences; and finally use the daughters to instruct the formation of seven-tile granddaughter sequences that are identical to the initial seed sequences. Considering that DNA is a functional material that can organize itself and other molecules into useful structures, our findings raise the tantalizing prospect that we may one day be able to realize self-replicating materials with various patterns or useful functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。