Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene

转基因斑马鱼模型用于研究人类chop基因上游开放阅读框介导的翻译控制

阅读:5
作者:Hung-Chieh Lee, Yi-Jiun Chen, Yu-Wei Liu, Kai-Yen Lin, Shaio-Wen Chen, Cheng-Yung Lin, Yi-Chin Lu, Pei-Chun Hsu, Sheng-Chung Lee, Huai-Jen Tsai

Abstract

Upstream open reading frame (uORF)-mediated translational inhibition is important in controlling key regulatory genes expression. However, understanding the underlying molecular mechanism of such uORF-mediated control system in vivo is challenging in the absence of an animal model. Therefore, we generated a zebrafish transgenic line, termed huORFZ, harboring a construct in which the uORF sequence from human CCAAT/enhancer-binding protein homologous protein gene (huORF(chop)) is added to the leader of GFP and is driven by a cytomegalovirus promoter. The translation of transgenic huORF(chop)-gfp mRNA was absolutely inhibited by the huORF(chop) cassette in huORFZ embryos during normal conditions, but the downstream GFP was only apparent when the huORFZ embryos were treated with endoplasmic reticulum (ER) stresses. Interestingly, the number and location of GFP-responsive embryonic cells were dependent on the developmental stage and type of ER stresses encountered. These results indicate that the translation of the huORF(chop)-tag downstream reporter gene is controlled in the huORFZ line. Moreover, using cell sorting and microarray analysis of huORFZ embryos, we identified such putative factors as Nrg/ErbB, PI3K and hsp90, which are involved in huORF(chop)-mediated translational control under heat-shock stress. Therefore, using the huORFZ embryos allows us to study the regulatory network involved in human uORF(chop)-mediated translational inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。