Engineering a dual vaccine against COVID-19 and tuberculosis

研制针对新冠肺炎和结核病的双重疫苗

阅读:5
作者:Carlyn Monèt Guthrie, Xuejuan Tan, Amber Cherry Meeker, Ashton Elisabeth Self, Lin Liu, Yong Cheng

Abstract

The COVID-19 pandemic, caused by SARS-CoV-2 virus, has been one of the top public health threats across the world over the past three years. Mycobacterium bovis BCG is currently the only licensed vaccine for tuberculosis, one of the deadliest infectious diseases in the world, that is caused by Mycobacterium tuberculosis. In the past decades, recombinant M.bovis BCG has been studied as a novel vaccine vector for other infectious diseases in humans besides tuberculosis, such as viral infections. In the current study, we generated a recombinant M. bovis BCG strain AspikeRBD that expresses a fusion protein consisting of M. tb Ag85A protein and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using synthetic biology technique. Our results show that the recombinant M. bovis BCG strain successfully expressed this fusion protein. Interestingly, the recombinant M. bovis BCG strain AspikeRBD significantly induced SARS-CoV-2 spike-specific T cell activation and IgG production in mice when compared to the parental M.bovis BCG strain, and was more potent than the recombinant M.bovis BCG strain expressing SARS-CoV-2 spike RBD alone. As expected, the recombinant M. bovis BCG strain AspikeRBD activated an increased number of M. tb Ag85A-specific IFNγ-releasing T cells and enhanced IgG production in mice when compared to the parental M.bovis BCG strain or the BCG strain expressing SARS-CoV-2 spike RBD alone. Taken together, our results indicate a potential application of the recombinant M. bovis BCG strain AspikeRBD as a novel dual vaccine against SARS-CoV-2 and M. tb in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。