Revisiting phosphoregulation of Cdc25C during M-phase induction

重新审视 M 期诱导过程中 Cdc25C 的磷酸调节

阅读:6
作者:Tan Tan, Chuanfen Wu, Ruoning Wang, Bih-Fang Pan, David Hawke, Fumin Yin, Zehao Su, Boye Liu, Sue-Hwa Lin, Wei Zhang, Jian Kuang

Abstract

Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities. The phosphorylation process involves substrate-mediated assembly of phosphorylation machinery that catalyzes multisite phosphorylation continuously without substrate dissociation. In contrast to the site-comprehensive phosphorylation of Cdc25C occurring at M-phase onset, the site-specific phosphorylation of Cdc25C by Cdk1 or other major mitotic kinases generates slight gel mobility shifts and modest activation of Cdc25C prior to M-phase onset. These findings suggest a two-stage framework consisting of site-specific phosphorylation followed by site-comprehensive phosphorylation for Cdc25C regulation during M-phase induction.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。