Revisiting phosphoregulation of Cdc25C during M-phase induction

重新审视 M 期诱导过程中 Cdc25C 的磷酸调节

阅读:8
作者:Tan Tan, Chuanfen Wu, Ruoning Wang, Bih-Fang Pan, David Hawke, Fumin Yin, Zehao Su, Boye Liu, Sue-Hwa Lin, Wei Zhang, Jian Kuang

Abstract

Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities. The phosphorylation process involves substrate-mediated assembly of phosphorylation machinery that catalyzes multisite phosphorylation continuously without substrate dissociation. In contrast to the site-comprehensive phosphorylation of Cdc25C occurring at M-phase onset, the site-specific phosphorylation of Cdc25C by Cdk1 or other major mitotic kinases generates slight gel mobility shifts and modest activation of Cdc25C prior to M-phase onset. These findings suggest a two-stage framework consisting of site-specific phosphorylation followed by site-comprehensive phosphorylation for Cdc25C regulation during M-phase induction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。