DAPK1 Signaling Pathways in Stroke: from Mechanisms to Therapies

中风中的 DAPK1 信号通路:从机制到治疗

阅读:8
作者:Shan Wang, Xiangde Shi, Hao Li, Pei Pang, Lei Pei, Huiyong Shen, Youming Lu

Abstract

Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin (CaM)-dependent serine/threonine protein kinase, plays important roles in diverse apoptosis pathways not only in tumor suppression but also in neuronal cell death. The requirement of DAPK1 catalytic activity for its proposed cell functions and the elevation of catalytic activity of DAPK1 in injured neurons in models of neurological diseases, such as ischemia and epilepsy, validate that DAPK1 can be taken as a potential therapeutic target in these diseases. Recent studies show that DAPK1-NR2B, DAPK1-DANGER, DAPK1-p53, and DAPK1-Tau are currently known pathways in stroke-induced cell death, and blocking these cascades in an acute treatment effectively reduces neuronal loss. In this review, we focus on the role of DAPK1 in neuronal cell death after stroke. We hope to provide exhaustive summaries of relevant studies on DAPK1 signals involved in stroke damage. Therefore, disrupting DAPK1-relevant cell death pathway could be considered as a promising therapeutic approach in stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。