Mechanism research on the interaction regulation of Escherichia and IFN-γ for the occurrence of T2DM

大肠杆菌与IFN-γ相互作用调控2型糖尿病发生的机制研究

阅读:8
作者:Meijun Lv, Lisha Li, Weidong Li, Fujie Yang, Qiongying Hu, Daqian Xiong

Background

Type 2 diabetes mellitus (T2DM) is a major social and public health problem which may be induced by intestinal flora imbalance through inflammatory response, and the specific mechanism remains unclear. In this study, we

Conclusions

The interaction network between the intestinal bacteria Escherichia and the cytokine IFN-γ may drive inflammation in visceral adipose tissue (VAT), indicating insulin signal transduction can be inhibited in adipocytes to induce insulin resistance.

Methods

This a case-control study. Patients with T2DM was the case group and healthy people as control. The differences of cytokine expression levels between patients with T2DM and healthy controls were assessed by using flow cytometry. The diversity and abundance of intestinal flora were evaluated by using 16S rRNA three-generation full-length sequencing technology.

Results

A total of 29 patients with T2DM and 28 healthy controls were included for analysis. Compared with the healthy control group, the expression levels of plasma cytokine interleukin-2 (IL-2) (P=0.0000006), IL-6 (P=0.000193), tumor necrosis factor α (TNF-α) (P=0.016), interferon-γ (IFN-γ) (P=0.000036) and interleukin-17 (IL-17) (P=0.004) were significantly up-regulated in T2DM patients, and the abundance of Megamonas_funiformis (P=0.0016) and Escherichia (P=0.049) in the intestine were significantly increased. In contrast, the abundance of Bacteroides_stercoris (P=0.0068), Bacteroides_uniformis (P=0.033), and Phascolarctobacterium_faecium (P=0.033) were decreased in T2DM patients. Further, differentially expressed Escherichia had a positive correlation with IFN-γ (r=0.73) by Pearson correlation analysis. Conclusions: The interaction network between the intestinal bacteria Escherichia and the cytokine IFN-γ may drive inflammation in visceral adipose tissue (VAT), indicating insulin signal transduction can be inhibited in adipocytes to induce insulin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。