Monosaccharides Dehydration Assisted by Formation of Borate Esters of α-Hydroxyacids in Choline Chloride-Based Low Melting Mixtures

在氯化胆碱基低熔点混合物中,通过形成 α-羟基酸的硼酸酯来辅助单糖脱水

阅读:6
作者:Thibaut Istasse, Vincent Lemaur, Gwénaëlle Debroux, Lauris Bockstal, Roberto Lazzaroni, Aurore Richel

Abstract

The synthesis of 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) by hexoses and pentoses dehydration is considered as a promising path to produce materials from renewable resources. Low-transition-temperature mixtures (LTTMs) enable selective (>80%) dehydration of ketoses to furanic derivatives at moderate temperature (<100°C). However, aldoses dehydration generally requires higher temperatures and an isomerization catalyst. Chromium trichloride has been reported as one of the most efficient catalyst but its kinetic inertness could limit its performances below 100°C. Consequently, we investigate herein boric acid catalysis of aldoses dehydration in LTTMs based on choline halides and organic acids at 90°C. The limited activity of boric acid regarding furanic compounds synthesis (e.g., 5% 5-HMF yield and 23% glucose conversion after 1 h at 90°C with maleic acid) can be enhanced through tetrahydroxyborate esters (THBE) formation with α-hydroxyacids (e.g., 19% 5-HMF yield and 61% glucose conversion after 1 h at 90°C). THBE formation is however associated with H3O+ generation favoring the appearance of side products (humins). We demonstrate that boric acid catalysis is not straightforward and that the use of THBE under moderate acidity should be further investigated to limit humins formation and promote furanic derivatives synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。