Synthesis of Optically Tunable and Thermally Stable PMMA-PVA/CuO NPs Hybrid Nanocomposite Thin Films

光学可调且热稳定的 PMMA-PVA/CuO NPs 混合纳米复合薄膜的合成

阅读:5
作者:Ahmad M Alsaad, Ahmad A Ahmad, Issam A Qattan, Abdul-Raouf El-Ali, Shatha A Al Fawares, Qais M Al-Bataineh

Abstract

We report the synthesis and comprehensive characterization of polymethylmethacrylate (PMMA)/polyvinylalcohol (PVA) polymeric blend doped with different concentrations of Copper oxide (CuO) nanoparticles (NPs). The PMMA-PVA/CuO nanocomposite hybrid thin films containing wt.% = 0%, 2%, 4%, 8%, and 16% of CuO NPs are deposited on glass substrates via dip-coating technique. Key optical parameters are measured, analyzed, and interpreted. Tauc, Urbach, Spitzer-Fan, and Drude models are employed to calculate the optical bandgap energy (Eg) and the optoelectronic parameters of PMMA-PVA/CuO nanocomposites. The refractive index and Eg of undoped PMMA-PVA are found to be (1.5-1.85) and 4.101 eV, respectively. Incorporation of specific concentrations of CuO NPs into PMMA-PVA blend leads to a considerable decrease in Eg and to an increase of the refractive index. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) transmittance spectra are measured and analyzed for undoped and doped polymeric thin films to pinpoint the major vibrational modes in the spectral range (500 and 4000 cm-1) as well as to elucidate the nature of chemical network bonding. Thermogravimetric analysis (TGA) is conducted under appropriate conditions to ensure the thermal stability of thin films. Doped polymeric thin films are found to be thermally stable below 105 °C. Therefore, controlled tuning of optoelectronic and thermal properties of doped polymeric thin films by introducing an appropriate concentration of inorganic fillers leads to a smart design of scaled multifunctional devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。