A Comprehensive Transcriptome-Wide Identification and Screening of WRKY Gene Family Engaged in Abiotic Stress in Glycyrrhiza glabra

甘草中参与非生物胁迫的WRKY基因家族的全面转录组鉴定与筛选

阅读:4
作者:Pooja Goyal, Malik Muzafar Manzoor, Ram A Vishwakarma, Deepak Sharma, Manoj K Dhar, Suphla Gupta

Abstract

The study reports 147 full-length WRKY genes based on the transcriptome analysis of Glycyrrhiza genus (G. glabra and G. uralensis). Additional motifs in G. glabra included DivIVA (GgWRKY20) and SerS Superfamily (GgWRKY21) at the C-terminal, and Coat family motifs (GgWRKY55) at the N-terminal of the proteins, while Exo70 exo cyst complex subunit of 338 amino acid (GuWRKY9) was present at the N-terminal of G. uralensis only. Plant Zn cluster super-family domain (17 WRKYs) and bZIP domain (2 WRKYs) were common between the two species. Based on the number of WRKY domains, sequence alignment and phylogenesis, the study identified GuWRKY27 comprising of 3 WRKY domains in G. uralensis and a new subgroup-IIf (10 members), having novel zinc finger pattern (C-X4-C-X22-HXH) in G. glabra. Multiple WRKY binding domains (1-11) were identified in the promoter regions of the GgWRKY genes indicating strong interacting network between the WRKY proteins. Tissue-specific expression of 25 GgWRKYs, under normal and treated conditions, revealed 11 of the 18 induction factor triggered response corroborating to response observed in AtWRKYs. The study identified auxin-responsive GgWRKY 55 & GgWRKY38; GA3 responsive GgWRKYs15&59 in roots and GgWRKYs8, 20, 38, 57 &58 in the shoots of the treated plant. GgWRKYs induced under various stresses included GgWRKY33 (cold), GgWRKY4 (senescence), GgWRKYs2, 28 & 33 (salinity) and GgWRKY40 (wounding). Overall, 23 GgWRKYs responded to abiotic stress, and 17 WRKYs were induced by hormonal signals. Of them 13 WRKYs responded to both suggesting inter-connection between hormone signalling and stress response. The present study will help in understanding the transcriptional reprogramming, protein-protein interaction and cross-regulation during stress and other physiological processes in the plant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。