A mutation in CFTR modifies the effects of the adenylate kinase inhibitor Ap5A on channel gating

CFTR 突变会改变腺苷酸激酶抑制剂 Ap5A 对通道门控的影响

阅读:6
作者:Qian Dong, Christoph O Randak, Michael J Welsh

Abstract

Mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. The CFTR anion channel is controlled by ATP binding and enzymatic activity at the two nucleotide-binding domains. CFTR exhibits two types of enzymatic activity: 1), ATPase activity in the presence of ATP and 2), adenylate kinase activity in the presence of ATP plus physiologic concentrations of AMP or ADP. Previous work showed that P(1),P(5)-di(adenosine-5')pentaphosphate (Ap(5)A), a specific adenylate kinases inhibitor, inhibited wild-type CFTR. In this study, we report that Ap(5)A increased activity of CFTR with an L1254A mutation. This mutation increased the EC50 for ATP by >10-fold and reduced channel activity by prolonging the closed state. Ap(5)A did not elicit current on its own nor did it alter ATP EC50 or maximal current. However, it changed the relationship between ATP concentration and current. At submaximal ATP concentrations, Ap(5)A stimulated current by stabilizing the channel open state. Whereas previous work indicated that adenylate kinase activity regulated channel opening, our data suggest that Ap(5)A binding may also influence channel closing. These results also suggest that a better understanding of the adenylate kinase activity of CFTR may be of value in developing new therapeutic strategies for cystic fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。