Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation

网格蛋白自组装涉及有利于细胞调节的协调弱相互作用

阅读:6
作者:Diane E Wakeham, Chih-Ying Chen, Barrie Greene, Peter K Hwang, Frances M Brodsky

Abstract

The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。