Co-translational formation of disulfides guides folding of the SARS-CoV-2 receptor binding domain

二硫键的共翻译形成引导 SARS-CoV-2 受体结合域的折叠

阅读:4
作者:Amir Bitran, Kibum Park, Eugene Serebryany, Eugene I Shakhnovich

Abstract

Many secreted proteins, including viral proteins, contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that the RBD can only refold reversibly if its native disulfides are present before folding. But in their absence, the RBD spontaneously misfolds into a nonnative, molten-globule-like state that is structurally incompatible with complete disulfide formation and that is highly prone to aggregation. Thus, the RBD native structure represents a metastable state on the protein's energy landscape with reduced disulfides, indicating that nonequilibrium mechanisms are needed to ensure native disulfides form before folding. Our atomistic simulations suggest that this may be achieved via co-translational folding during RBD secretion into the endoplasmic reticulum. Namely, at intermediate translation lengths, native disulfide pairs are predicted to come together with high probability, and thus, under suitable kinetic conditions, this process may lock the protein into its native state and circumvent highly aggregation-prone nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。