MnO2@Reduced Graphene Oxide Nanocomposite-Based Electrochemical Sensor for the Simultaneous Determination of Trace Cd(II), Zn(II) and Cu(II) in Water Samples

基于 MnO2@还原氧化石墨烯纳米复合材料的电化学传感器用于同时测定水样中的痕量 Cd(II)、Zn(II) 和 Cu(II)

阅读:4
作者:Siyamthanda Hope Mnyipika, Tshimangadzo Saddam Munonde, Philiswa Nosizo Nomngongo

Abstract

The rapid detection of trace metals is one of the most important aspect in achieving environmental monitoring and protection. Electrochemical sensors remain a key solution for rapid detection of heavy metals in environmental water matrices. This paper reports the fabrication of an electrochemical sensor obtained by the simultaneous electrodeposition of MnO2 nanoparticles and RGO nanosheets on the surface of a glassy carbon electrode. The successful electrodeposition was confirmed by the enhanced current response on the cyclic voltammograms. The XRD, HR-SEM/EDX, TEM, FTIR, and BET characterization confirmed the successful synthesis of MnO2 nanoparticles, RGO nanosheets, and MnO2@RGO nanocomposite. The electrochemical studies results revealed that MnO2@RGO@GCE nanocomposite considerably improved the current response on the detection of Zn(II), Cd(II) and Cu(II) ions in surface water. These remarkable improvements were due to the interaction between MnO2 nanomaterials and RGO nanosheets. Moreover, the modified sensor electrode portrayed high sensitivity, reproducibility, and stability on the simultaneous determination of Zn(II), Cd(II), and Cu(II) ions. The detection limits of (S/N = 3) ranged from 0.002-0.015 μg L-1 for the simultaneous detection of Zn(II), Cd(II), and Cu(II) ions. The results show that MnO2@RGO nanocomposite can be successfully used for the early detection of heavy metals with higher sensitivity in water sample analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。