Active 5' splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes

活性5’剪接位点调控来自含内含子基因的拟南芥microRNA的生物发生效率

阅读:6
作者:Katarzyna Knop, Agata Stepien, Maria Barciszewska-Pacak, Michal Taube, Dawid Bielewicz, Michal Michalak, Jan W Borst, Artur Jarmolowski, Zofia Szweykowska-Kulinska

Abstract

Arabidopsis, miR402 that is encoded within the first intron of a protein-coding gene At1g77230, is induced by heat stress. Its upregulation correlates with splicing inhibition and intronic proximal polyA site selection. It suggests that miR402 is not processed from an intron, but rather from a shorter transcript after selection of the proximal polyA site within this intron. Recently, introns and active 5' splice sites (5'ss') have been shown to stimulate the accumulation of miRNAs encoded within the first exons of intron-containing MIR genes. In contrast, we have observed the opposite effect of splicing inhibition on intronic miR402 production. Transient expression experiments performed in tobacco leaves revealed a significant accumulation of the intronic mature miR402 when the 5'ss of the miR402-hosting intron was inactivated. In contrast, when the miR402 stem-loop structure was moved into the first exon, mutation of the first-intron 5'ss resulted in a decrease in the miRNA level. Thus, the 5'ss controls the efficiency of miRNA biogenesis. We also show that the SERRATE protein (a key component of the plant microprocessor) colocalizes and interacts with several U1 snRNP auxiliary proteins. We postulate that SERRATE-spliceosome connections have a direct effect on miRNA maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。