The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species

食源性病原体空肠弯曲菌对胆汁盐脱氧胆酸盐产生反应,并对活性氧产生对抗作用

阅读:8
作者:Nicholas M Negretti, Christopher R Gourley, Geremy Clair, Joshua N Adkins, Michael E Konkel

Abstract

Bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygen stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: 1) induce the production of reactive oxygen species (ROS); 2) decrease succinate dehydrogenase activity (complex II of the electron transport chain); 3) increase catalase activity that is involved in H2O2 breakdown; and 4) result in DNA strand breaks. Congruently, the addition of 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic that reacts with superoxide, rescued the growth of C. jejuni cultured in the presence of deoxycholate. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。